COMPUTATIONAL FLUID DYNAMICS (CFD)
We're not alone in our usage of CFD, which allows aerodynamicists, like Chris Yu, to play in a virtual space with a range of shapes and surfaces. With it, he can easily simulate the flow of various fluids across shapes of his choosing to test their aerodynamic performance. CFD allows us to see, via simulation, things you can’t see in the real world, like tiny "bits" of drag on a frame. It’s an extremely handy way of predicting aero behaviors. Where our usage diverges from the norm, however, is that we're able to discard designs that are total duds before developing prototypes for testing in our Win Tunnel. Of course, we're in a unique position, in that, we're able to design and test in CFD in the morning, 3D-print a prototype in the afternoon, and test in the Win Tunnel before the day is done.
DATA ACQUISITION (DAQ)
Then there's our own DAQ system. Used on both the road and the velodrome, DAQ takes data from power, speed, rider position, and the direction of wind, and it measures the true coefficient of aerodynamic drag on the rider. Information gleaned from this testing enables us to advise our Body Geometry Fit team, racing staff, and the athletes themselves on changes to their position that'll improve performance. And while the Win Tunnel can certainly be more precise, there's nothing quite like combining what we learn there with real-world riding.